Abstract

Rees-like algebras have played a major role in settling the Eisenbud–Goto conjecture. This paper concerns the structure of the canonical module of the Rees-like algebra and its class groups. Via an explicit computation based on linkage, we provide an explicit and surprisingly well-structured resolution of the canonical module in terms of a type of double-Koszul complex. Additionally, we give descriptions of both the divisor class group and the Picard group of a Rees-like algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.