Abstract

A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.