Abstract

This paper describes systematic design process toward third-order autonomous deterministic hyperchaotic oscillators with two coupled generative two-terminal elements. These active devices represent alternative to conventional dissipative accumulation elements such as capacitors and inductors. Analyzed network structures contain generalized bipolar transistor as only active element. Three different networks are studied, depending on common-electrode configurations. In each case, transistor is modelled using two-port admittance parameters with the non-zero linear backward and polynomial forward trans-conductance. As proved in paper, scalar nonlinearity caused by amplification property of transistor can push circuit into chaotic and, more interestingly, hyperchaotic steady states. Existence of parameter spaces leading to robust chaotic and hyperchaotic solution is documented by using concept of one-dimensional Lyapunov exponents and colored high-resolution surface-contour plots of two largest numbers. Geometrical structural stability of generated strange attractors is proved via construction of the flow-equivalent chaotic oscillator and real measurement. Plane projections of interesting observed attractors are captured by oscilloscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.