Abstract

Sets of zero-dimensional ideals in the polynomial ring k[x,y] that share the same leading term ideal with respect to a given term ordering are known to be affine spaces called Gröbner cells. Conca-Valla and Constantinescu parametrize such Gröbner cells in terms of certain canonical Hilbert-Burch matrices for the lexicographical and degree-lexicographical term orderings, respectively.In this paper, we give a parametrization of (x,y)-primary ideals in Gröbner cells which is compatible with the local structure of such ideals. More precisely, we extend previous results to the local setting by defining a notion of canonical Hilbert-Burch matrices of zero-dimensional ideals in the power series ring k〚x,y〛 with a given leading term ideal with respect to a local term ordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.