Abstract

Dynamic images of functional activity in the brain offer the potential to measure connectivity between regions of interest. We want to measure causal activity between regions of interest (ROIs) with signals recorded from multiple channels or voxels in each ROI. Previous methods, such as Granger causality, look for causality between individual time series; hence, they suffer from local interactions or interferers obscuring signals of interest between two ROIs. We propose a metric that reduces the effect of interference by taking weighted sums of sensors in each ROI, as is done with canonical correlation. Hence, we measure region-to-region, rather than channel-to-channel or point-to-point, Granger causality. We show in simulation that our “canonical Granger causality” accurately mimics the underlying structure with few samples, unlike current methods of multivariate Granger causality. We then use anatomically relevant regions of interest in a visuomotor task in a multichannel intracortical EEG study to infer the direction of transmission in visual processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.