Abstract

Based on the phase-space path integral (functional integral) for a system with a regular or singular Lagrangian, the generalized Ward identities for phase space generating functional under the global transformation in phase space are derived respectively. The canonical Noether theorem at the quantum level is also established. It is pointed out that the connection between the symmetries and conservation laws in classical theories, in general,is no longer preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta as usually performed. Applying the present formulation to Yang-Mills theory, the quantal BRS conserved quantity and Ward-Takahashi identity for BRS tranformation are derived; the Ward identities for gaugeghost proper vertices and new quantal conserved quantity are also found. In comparison of quantal conservation laws with those one deriving from configuration-space path integral using the Faddeev-Popov(F-P) trick is discussed. A precise study of path-integral quantisation for a nonlinear sigma model with Hopf and Chern-Simons (CS) terms is reexamined. It has been shown that the angular momentum at the quantum level is equal to classical (Noether ) one. Applying our formulation to non-Abelian CS theory, the quantal conserved angular momentum of this system is obtained which differs from classical one in that one needs to take into account the contribution of angular momenta of ghost fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call