Abstract

AbstractWe prove the existence of canonical scrolls; that is, scrolls playing the role of canonical curves. First of all, they provide the geometrical version of Riemann Roch Theorem: any special scroll is the projection of a canonical scroll and they allow to understand the classification of special scrolls in PN. Canonical scrolls correspond to the projective model of canonical geometrically ruled surfaces over a smooth curve. We also prove that the generic canonical scroll is projectively normal except in the hyperelliptic case and for very particular cases in the nonhyperelliptic situation. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.