Abstract

We study the problem of finding good gauges for connections in higher gauge theories. We find that, for 2-connections in strict 2-gauge theory and 3-connections in 3-gauge theory, there are local “Coulomb gauges” that are more canonical than in classical gauge theory. In particular, they are essentially unique, and no smallness of curvature is needed in the critical dimensions. We give natural definitions of 2-Yang–Mills and 3-Yang–Mills theory and find that the choice of good gauges makes them essentially linear. As an application, (anti-)selfdual 2-connections over $$B^6$$ are always 2-Yang–Mills, and (anti-)selfdual 3-connections over $$B^8$$ are always 3-Yang–Mills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.