Abstract
Let G = (V,E) be a biconnected graph and let C be a cycle in G. The subgraphs of G identified with the biconnected components of the contraction of C in G are called the bridges of C. Associated with the set of bridges of a cycle C is an auxilliary graphical structure GC called a bridge graph or an overlap graph. Such auxilliary graphs have provided important insights in classical graph theory, algorithmic graph theory, and complexity theory. In this paper, we use techniques from algorithmic combinatorics and complexity theory to derive canonical forms for cycles in bridge graphs. These canonical forms clarify the relationship between cycles in bridge graphs, the structure of the underlying graph G, and lexicographic order relations on the vertices of attachment of bridges of a cycle. The first canonical form deals with the structure of induced bridge graph cycles of length greater than three. Cycles of length three in bridge graphs are studied from a different point of view, namely that of the characteri...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.