Abstract

We have presented two CCA-based approaches for data fusion and group analysis of biomedical imaging data and demonstrated their utility on fMRI, sMRI, and EEG data. The results show that CCA and M-CCA are powerful tools that naturally allow the analysis of multiple data sets. The data fusion and group analysis methods presented are completely data driven, and use simple linear mixing models to decompose the data into their latent components. Since CCA and M-CCA are based on second-order statistics they provide a relatively lessstrained solution as compared to methods based on higherorder statistics such as ICA. While this can be advantageous, the flexibility also tends to lead to solutions that are less sparse than those obtained using assumptions of non-Gaussianity-in particular superGaussianity-at times making the results more difficult to interpret. Thus, it is important to note that both approaches provide complementary perspectives, and hence it is beneficial to study the data using different analysis techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.