Abstract
Every character on a graded connected Hopf algebra decomposes uniquely as a product of an even character and an odd character (Aguiar, Bergeron, and Sottile, math.CO/0310016). We obtain explicit formulas for the even and odd parts of the universal character on the Hopf algebra of quasi-symmetric functions. They can be described in terms of Legendre's beta function evaluated at half-integers, or in terms of bivariate Catalan numbers: $$C(m,n)={(2m)!(2n)!\over m!(m+n)!n!}\,.$$ Properties of characters and of quasi-symmetric functions are then used to derive several interesting identities among bivariate Catalan numbers and in particular among Catalan numbers and central binomial coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.