Abstract
In an earlier work (Publ. Inst. Hautes Études Sci., 122 (2015), 65–168) the first three authors conjectured that the ring of regular functions on a natural class of affine log Calabi–Yau varieties (those with maximal boundary) has a canonical vector space basis parameterized by the integral tropical points of the mirror. Further, the structure constants for the multiplication rule in this basis should be given by counting broken lines (certain combinatorial objects, morally the tropicalizations of holomorphic discs). Here we prove the conjecture in the case of cluster varieties, where the statement is a more precise form of the Fock–Goncharov dual basis conjecture (Publ. Inst. Hautes Études Sci., 103 (2006), 1–211). In particular, under suitable hypotheses, for each Y Y the partial compactification of an affine cluster variety U U given by allowing some frozen variables to vanish, we obtain canonical bases for H 0 ( Y , O Y ) H^0(Y,\mathcal {O}_Y) extending to a basis of H 0 ( U , O U ) H^0(U,\mathcal {O}_U) . Each choice of seed canonically identifies the parameterizing sets of these bases with integral points in a polyhedral cone. These results specialize to basis results of combinatorial representation theory. For example, by considering the open double Bruhat cell U U in the basic affine space Y , Y, we obtain a canonical basis of each irreducible representation of SL r \operatorname {SL}_r , parameterized by a set which each choice of seed identifies with the integral points of a lattice polytope. These bases and polytopes are all constructed essentially without representation-theoretic considerations. Along the way, our methods prove a number of conjectures in cluster theory, including positivity of the Laurent phenomenon for cluster algebras of geometric type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.