Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.