Abstract

Induction of broad Th1 cellular immune responses and cytokines is crucial characteristics for vaccines against intracellular infections such as hepatitis C virus (HCV). Plants (especially oilseed tissues) and plant-immunomodulators (like oil bodies) offer cost-effective and scalable possibilities for the production of immunologically relevant and safe vaccine antigens and adjuvants, respectively. Herein, we provide data of the murine immunization by transgenic canola oilseed-derived HCV core protein (HCVcp) soluble extract (TSE) and Escherichia coli- derived rHCVcp in combination with Canola oil bodies (oil) compared to that of the Freund's (FA) adjuvant. Mice immunized by TSE+ oil developed both strong humeral (IgG) and Th1-biased cellular responses, manifested by high levels of IFN-γ and lower IgG1/IgG2a ratio and IL-4 secretion. Results of the intracellular cytokine staining indicated that TSE+ oil immunization in mice triggered both CD4+ and CD8+ T cells to release IFN-γ, while CD4+ cells were mostly triggered when FA was used. Analyses by qRT-PCR indicated that a combination of rHCVcp/TSE with oil body induced high levels of IL-10 cytokines compared to that of the FA adjuvant. These characteristics are important properties for the design of an HCV vaccine candidate and indicate the potential of Canola-derived antigen and oil bodies in addressing these concerns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.