Abstract

Cannflavins, flavonoids abundantly present in Cannabis sativa, possess a distinct chemical structure comprising a vanillyl group. Notably, the capsaicin structure also contains a vanillyl group, which is considered essential for interacting with the vanilloid receptor. The vanilloid receptor plays a crucial role in the perception of pain, heat, and inflammation and mediates the analgesic effects of capsaicin. Therefore, we postulated that prolonged exposure to cannflavin A (Can A) and cannflavin B (Can B) would provoke vanilloid receptor desensitization and hinder nocifensive responses to noxious thermal stimuli. C. elegans wild-type (N2) and mutants were exposed to Can A and Can B solutions for 60min and then aliquoted on Petri dishes divided into quadrants for thermal stimulation. We then determined the thermal avoidance index for each C. elegans experimental group. Proteomics was performed to identify proteins and pathways associated with Can A or B treatment. Prolonged exposure to Can A and Can B hindered heat avoidance (32-35°C) in C. elegans. No antinociceptive effect was observed 6h post Can A or B exposure. Proteomics and Reactome pathway enrichment analyses identified hierarchical differences between Can A- and B-treated nematodes. However, both treatments were related to eukaryotic translation initiation (R-CEL-72613) and metabolic processes strongly associated with pain development. Our study aids in characterizing the pharmacological activity of cannflavins isolated from Cannabis sativa and outlines a possible application as pain therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call