Abstract

The role of cannabis in the etiology of schizophrenia has been documented as possibly the strongest environmental risk factor. However, the pathomechanism whereby cannabis use increases this risk has not yet been identified. We argue that this pathomechanism may involve direct effects of exogenous cannabinoids on T-type calcium channels in the thalamus. These channels are crucial for amplification of corticothalamic inputs, as well as for the ability of the thalamus to generate neuronal burst firing. Cortically induced thalamic burst firing has been found to be important in trans-thalamic cortico-cortical interactions. Therefore, any potential interference with the burst firing mode in the thalamus could lead to an impairment in these interactions, which in turn causes a relative disconnection between cortical areas. This in turn could result in reduced ability to recognize re-afferent sensory inputs and psychosis. We also argue that the effects of Δ9THC are more detrimental compared with the effects of cannabidiol, as the former may increase the excitability of thalamic neurons by its direct effect on T-type calcium channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call