Abstract

The relationship between GDP and cannabinoid-stimulated [35S]guanosine-5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding was investigated in rat cerebellar membranes. Kinetic analyses showed that [35S]GTPgammaS binding reached steady-state levels and that the association rate was increased by the agonist WIN 55212-2 proportional to the concentration of GDP. Dissociation of [35S]GTPgammaS occurred with two rates (t1/2 = 7 and 170 min), and WIN 55212-2 increased the proportion of sites exhibiting the faster rate. Without GDP, [35S]GTPgammaS bound to membranes with high and low affinity, and WIN 55212-2 had no effect. With 30 microM GDP, [35S]GTPgammaS bound to low and intermediate affinity sites, and WIN 55212-2 induced high affinity [35S]GTPgammaS binding without affecting low affinity sites. GDP competed for high affinity [35S]GTPgammaS binding with high and intermediate affinity in the absence of WIN 55212-2 and with high and low affinity in the presence of WIN 55212-2. Cannabinoid ligands displayed differential abilities to maximally stimulate [35S]GTPgammaS binding in the presence of GDP. Efficacy differences among ligands increased with increasing GDP concentrations. GDP competition curves revealed that agonists induced low affinity GDP Ki values that were proportional to agonist Emax values, indicating that agonist efficacy is determined by displacement of GDP from G-proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.