Abstract
BackgroundThe anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated. Specifically, the anti-inflammatory effect of CB2R may be achieved by regulating macrophage polarisation. Several research findings suggested that the activation of CB2R could attenuate inflammation by reducing pro-inflammatory M1 macrophage polarisation and promoting anti-inflammatory M2 polarisation. However, considering CB2R inhibits fibrosis and M2 promotes fibrosis, that the activation of CB2R may lead to an increase in M2 macrophages seems contradictory. Therefore, we hypothesised that the activation of CB2R to attenuate inflammation is not achieved by up-regulating M2 macrophages.MethodsWe established an incised wound model using mouse skin and used this to evaluate the effect of CB2R agonists (JWH133 or GP1a) and an antagonist (AM630) on wound healing. At various post-injury intervals, we used western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction assays to determine CB2R protein expression, M1/M2 macrophage infiltration, and the protein and gene expression of M1/M2-associated markers and cytokines in skin lesions.ResultsActivation of CB2R significantly reduced M1 macrophage infiltration and slightly increased M2 macrophage infiltration. Similarly, gene expression and protein levels of M1-associated markers and cytokines (interleukin [IL]-6, IL-12, CD86 and inducible nitric oxide synthase) were significantly down-regulated after CB2R agonist administration; in contrast, markers and cytokines were increased in the CB2R antagonist–treated group. Conversely, the administration of agonists slightly increased gene expression and protein levels of M2-associated markers and cytokines (IL-4, IL-10, CD206 and arginase-1 [Arg-1]); however, a statistical significance at most time points post-injury was not noted.ConclusionIn summary, our findings suggested that during incised skin wound healing in mice, increased levels of CB2R may affect inflammation by regulating M1 rather than M2 macrophage subtype polarisation. These results offer a novel understanding of the molecular mechanisms involved in the inhibition of inflammation by CBR2 that may lead to new treatments for cutaneous inflammation.
Highlights
The anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated
Effect of CB2R modulation on the infiltration of M1/M2 macrophages in skin lesions To examine whether the modulation of CB2R affected macrophage polarisation after injury, we first measured the number of M1 (F4/80+and CD86+) and M2 (F4/80+ and CD206+) macrophages infiltrating skin lesions by immunofluorescence staining (Fig. 2a and b)
The results from this study further revealed that the anti-inflammatory effect of CB2R may be achieved by inhibiting pro-inflammatory M1 macrophage polarisation rather than activating anti -inflammatory M2 macrophages
Summary
The anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated. Several research findings suggested that the activation of CB2R could attenuate inflammation by reducing pro-inflammatory M1 macrophage polarisation and promoting anti-inflammatory M2 polarisation. Skin wound healing is a dynamically complex and multistage pathological process that is precisely regulated by multiple cells and cytokines with different physiological functions. Such a process involves three important stages: inflammation, fibrosis, and tissue remodeling [1, 2]. CB2R belongs to the G-protein–coupled receptor family, and is induced by active inflammation in both humans and mice [5] It is mainly expressed in cells associated with innate immunity, such as microglia, astrocytes, neutrophils, macrophages, and myofibroblasts [6,7,8]. The mechanism by which CB2R reduces inflammation and promotes tissue repair in the course of skin wound healing is still not completely clear
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.