Abstract

Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are bioactive cannabinoids. We recently showed that acute THC administration drives region-dependent changes in the mouse brain lipidome. This study tested the hypothesis that cell lines representing cell types present in the central nervous system (CNS), neurons (N18 cells), astrocytes (C6 glioma cells), and microglia (BV2 cells) would respond differently to THC, CBD, or their combination. This experimental strategy also allowed us to test the hypothesis that THC and CBD are metabolized differently if presented in combination and to test the hypothesis that responses to CBD are not like the fatty acid amide hydrolase (FAAH) inhibitor URB597. Finally, we tested the hypothesis that CBD's CNS effects would differ in the N-acyl phosphatidyl ethanolamine-specific phospholipase D (NAPE-PLD) knockout (KO) compared to wild-type (WT) mice.Methods: N18, C6, and BV2 cells were stimulated with 1 μM THC, 1 μM CBD, 1 μM THC:CBD, 1 μM URB597, or vehicle for 2 h and lipids extracted. Adult female WT and NAPE-PLD KO mice were injected with 3 mg/kg CBD or vehicle i.p., brains collected 2 h later, eight brain regions dissected, and lipids extracted. Extracted lipids were characterized and quantified using high-pressure liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS).Results: Lipid levels in each cell type were differentially affected by THC, CBD, or THC:CBD with a few exceptions. In all cell lines, THC increased levels of arachidonic acid and CBD increased levels of N-acyl ethanolamines (NAEs), including N-arachidonoyl ethanolamine. More THC remained when cells were coincubated with CBD; however, levels of THC metabolites were cell-type dependent. CBD and URB597 caused very different lipid profiles in the cell-based assays with the primary similarity being increases in NAEs. CBD increased levels of NAEs in the WT hippocampus, cerebellum, thalamus, cortex, midbrain, and brainstem; however, NAEs did not increase in any brain region after CBD in NAPE-PLD KO mice.Conclusions: CBD and THC differentially modify the lipidome of the brain and CNS-type cell lines. Increases in NAEs observed after CBD treatment had previously been attributed to FAAH inhibition; however, data here suggest the alternative hypothesis that CBD is activating NAPE-PLD to increase NAE levels.

Highlights

  • D9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are bioactive cannabinoids

  • The focus of the results here will be on a selected subset of this lipidome: the N-acyl ethanolamines (NAEs), arachidonic acid (AA), AA-derived lipoamines, 2-AG, and PGs

  • In every region except the hypothalamus (HYP), CBD increased multiple AA-derived lipoamines, including Narachidonoyl glycine (NAGly), which increased in five regions: striatum (STR), HIPP, THAL, CTX, and MID

Read more

Summary

Introduction

D9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are bioactive cannabinoids. We recently showed that acute THC administration drives region-dependent changes in the mouse brain lipidome. This study tested the hypothesis that cell lines representing cell types present in the central nervous system (CNS), neurons (N18 cells), astrocytes (C6 glioma cells), and microglia (BV2 cells) would respond differently to THC, CBD, or their combination. This experimental strategy allowed us to test the hypothesis that THC and CBD are metabolized differently if presented in combination and to test the hypothesis that responses to CBD are not like the fatty acid amide hydrolase (FAAH) inhibitor URB597. CBD and URB597 caused very different lipid profiles in the cell-based assays with the primary similarity being increases in NAEs. CBD increased levels of NAEs in the WT hippocampus, cerebellum, thalamus, cortex, midbrain, and brainstem; NAEs did not increase in any brain region after CBD in NAPE-PLD KO mice.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call