Abstract

Cannabidiol (CBD) is a non-psychoactive component of Cannabis which has recently received regulatory consideration for the treatment of intractable forms of epilepsy such as the Dravet and the Lennox-Gastaut syndromes. The mechanisms of the antiepileptic effects of CBD are unclear, but several pre-clinical studies suggest the involvement of ion channels. Therefore, we have evaluated the effects of CBD on seven major cardiac currents shaping the human ventricular action potential and on Purkinje fibers isolated from rabbit hearts to assess the in vitro cardiac safety profile of CBD. We found that CBD inhibits with comparable micromolar potencies the peak and late components of the NaV1.5 sodium current, the CaV1.2 mediated L-type calcium current, as well as all the repolarizing potassium currents examined except Kir2.1. The most sensitive channels were KV7.1 and the least sensitive were KV11.1 (hERG), which underly the slow (IKs) and rapid (IKr) components, respectively, of the cardiac delayed-rectifier current. In the Purkinje fibers, CBD decreased the action potential (AP) duration more potently at half-maximal than at near complete repolarization, and slightly decreased the AP amplitude and its maximal upstroke velocity. CBD had no significant effects on the membrane resting potential except at the highest concentration tested under fast pacing rate. These data show that CBD impacts cardiac electrophysiology and suggest that caution should be exercised when prescribing CBD to carriers of cardiac channelopathies or in conjunction with other drugs known to affect heart rhythm or contractility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.