Abstract

The aim of the study was to investigate the inhibitory activity of candidone, the active constituent of Derris (D.) indica, on the proliferation, migration, and invasiveness of human hepatoblastoma (HepG2) cells. Cancer cell death was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis-associated morphological changes were observed by phase contrast microscopy. Additionally, Western blotting was used to study protein expression following treatment with candidone, and transwell migration and invasion assays were used for observing cancer cell migration and invasiveness, respectively. The results suggest that candidone possesses potent inhibitory activity against HepG2 cells (concentration, 100 µM; 24 h treatment). Cancer cells treated with candidone exhibited apoptosis-associated changes, including detachment, cell shrinkage and death. Furthermore, candidone was shown to promote cell death by activating caspase-3 and -9, and decreasing the expression of antiapoptotic proteins, including p65, induced myeloid leukemia cell differentiation protein Mcl-1, B-cell lymphoma 2 (Bcl2), Bcl2-associated agonist of cell death and survivin. Moreover, candidone inhibited the migration and invasion abilities of HepG2 cells and decreased the levels of proteins associated with these processes, including phospho-p38 and active matrix metallopeptidase 9. Collectively, the results of the present study indicate that candidone is able to inhibit the proliferation, migration and invasive potential of HepG2 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.