Abstract

The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name "Candidatus Desulfobulbus rimicarensis" is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps.IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe "Candidatus Desulfobulbus rimicarensis," an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.

Highlights

  • The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber

  • In order to assess the microbial diversity of R. exoculata epibionts, nine adult shrimp individuals sampled from the South Mid-Atlantic Ridge (SMAR) were analyzed by 454 high-throughput pyrosequencing

  • Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata in deep-sea hydrothermal vent environments [11,12,13], their ecological function and symbiotic adaptation to the shrimp host are not clear

Read more

Summary

Introduction

The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways This epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. A recent metagenomic study performed on a shrimp from the Rainbow hydrothermal vent field revealed that the rTCA and CBB cycles were used for carbon fixation by two filamentous epibionts belonging to the Campylobacteria and the Gammaproteobacteria, respectively These epibionts could couple the oxidation of reduced sulfur compounds or molecular hydrogen to oxygen or nitrate reduction [13]. The ecological functions and potential benefits for the shrimp host remain poorly understood so far, largely due to a lack of genome-level investigations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.