Abstract
We present an analysis of two concentrically-fractured depressions on Mars, one in northern Hellas and the second in Galaxias Fossae. Volumetric measurements indicate that ∼2.4km3 and ∼0.2km3 of material was removed in order to form the North Hellas and Galaxias depressions. The removed material is inferred to be predominantly water ice. Calorimetric estimates suggest that up to ∼103–105m3 of magma would have been required to melt/sublimate such a volume of ice under an ice/magma interaction scenario. This process would lead to subsidence and cracking of the surface, which could produce the observed concentric fracture (crevasse-like) morphology. While the Galaxias Fossae landform morphology is consistent with an impact origin, the large volume of removed material in North Hellas is less consistent with an impact origin and is interpreted to have resulted from volcanic melting of ice. The possibility of liquid water formation during or subsequent to volcanism or an impact could generate locally-enhanced habitable conditions, making these features tantalizing geological and astrobiological exploration targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.