Abstract

In order to acquire enough nutrients and energy for further development, larvae need to invest a large portion of their sensory equipments to identify food sources. Yet, the molecular basis of odor-driven behavior in larvae has been poorly investigated. Information on olfactory genes, particularly odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the initial steps of olfaction is very scarce. In this study, we have identified 26 OBP and 21 CSP genes from the transcriptomes of Helicoverpa armigera larval antennae and mouthparts. A comparison with the 34 OBP and 18 CSP genes of the adult antenna, revealed four novel OBPs and seven novel CSPs. Similarly, 27 OBPs (six novel OBPs) and 20 CSPs (6 novel CSPs) were identified in the transcriptomes of Helicoverpa assulta larval antennae and mouthparts. Tissue-specific profiles of these soluble proteins in H. armigera showed that 6 OBP and 4 CSP genes are larval tissue-specific, 15 OBPs and 13 CSPs are expressed in both larvae and adult, while the rest are adult- specific. Our data provide useful information for functional studies of genes involved in larval foraging.

Highlights

  • Insects need a specialised sensory system to monitor environmental odors

  • 39,371 unigenes consisting of 12,724 distinct clusters and 26,647 distinct singletons were obtained for H. armigera and 44,352 unigenes consisting of 11,179 distinct clusters and 33,173 distinct singletons were obtained for H. assulta (Table 1)

  • In the nr homologous species distribution, 46.78% (H. armigera) and 48.42% (H. assulta) annotated sequences closely matched the sequences of B. mori

Read more

Summary

Introduction

Insects need a specialised sensory system to monitor environmental odors. Olfactory stimuli in Lepidoptera can be divided into intra-specific pheromones, mainly mediating communication between sexes, and plant volatiles used as cues for larval foraging and oviposition [1,2,3]. Odor detection is achieved by ten thousand chemosensilla on the two main sensory organs, antenna and mouthparts, housing olfactory sensory neurons (OSNs) that respond to volatiles and send electrical impulses to antennal lobes. Candidate OBPs and CSPs in the larval chemosensory tissues of Helicoverpa armigera and H. assulta

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.