Abstract

ABSTRACT Rhipicephalus microplus causes huge losses in cattle. Host genetic background greatly affects the immune efficiency in resistance or susceptibility to tick infestation, which is one of the many factors that play a role on that trait. We performed a systematic review of genome-wide association studies (GWAS) for tick resistance in cattle resulting in 1353 candidate genes for post-GWAS analyses. From those, genes showing possible structural variants from the bovine genome were classified by the Variant Effect Predictor from Ensembl. Ninety-two candidate genes showed potential structural variants in 5′ UTR and coding region and were used for functional annotation. Enriched biological processes (e.g. regulation of eosinophil chemotaxis, RIG-I signalling pathway and monocyte differentiation) and candidate genes (e.g. DAPK2, PUM1, ACIN1, INPP5D) linked with immune system function were identified and thus associated with tick resistance. Besides, gene-transcription factors (TFs) networks were obtained from TFs associated with immune system (FOXO3, PPARG, STAT3, NFKB1, GATA3 and ARNT) and the candidate genes associated with tick resistance in cattle highlighted (e.g. OR4L1, PNP, LRRIQ1, GIMAP8, MYO6, MEP1A and LRFN2). Thus, promising candidate genes with a possible functional role for tick resistance in cattle are presented for further in vitro and/or in vivo analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.