Abstract

Knowledge of the biological significance underlying quantitative trait loci (QTLs) for disease resistance is generally limited. In recent years, advances in plant-microbe interactions and genome mapping have lead to an increased understanding of the genes involved in plant defense and quantitative disease resistance. Here, we report on the application of the candidate-gene approach to the mapping of QTLs for disease resistance in a population of wheat recombinant inbreds. Over 50 loci, representing several classes of defense response (DR) genes, were placed on an existing linkage map and the genome was surveyed for QTLs associated with resistance to several diseases including tan spot, leaf rust, Karnal bunt, and stem rust. Analysis revealed QTLs with large effects in regions of putative resistance (R) genes, as previously reported. Several candidate genes, including oxalate oxidase, peroxidase, superoxide dismutase, chitinase and thaumatin, mapped within previously identified resistance QTLs and explained a greater amount of the phenotypic variation. A cluster of closely linked DR genes on the long arm of chromosome 7B, which included genes for catalase, chitinase, thaumatins and an ion channel regulator, had major effects for resistance to leaf rust of adult plants under conditions of natural infestation. The results of this study indicate that many minor resistance QTLs may be from the action of DR genes, and that the candidate-gene approach can be an efficient method of QTL identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.