Abstract

Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call