Abstract
BackgroundGUP1 gene was primarily identified in Saccharomyces cerevisiae being connected with glycerol uptake defects in association with osmotic stress response. Soon after, Gup1p was implicated in a complex and extensive series of phenotypes involving major cellular processes. These include membrane and wall maintenance, lipid composition, bud-site selection, cytoskeleton orientation, vacuole morphology, secretory/endocytic pathway, GPI anchors remodelling, and lipid-ordered domains assembly, which is compatible with their inclusion in the Membrane Bound O-acyl transferases (MBOAT) family. In mammals, it has been described as a negative regulator of the Sonic hedgehog pathway involved in morphogenesis, differentiation, proliferation, among other processes.ResultsWe show that Candida albicans Gup1p strongly interferes with the capacity of cells to develop hyphae, to adhere, to invade, and to form a biofilm, all of which are significant virulence factors. Furthermore, the mutant colonies exhibited an aberrant morphology/differentiation pattern. Identically to S. cerevisiae, Cagup1Δ null mutant was more resistant to antifungals like fluconazole, ketoconazole, and clotrimazole, and displayed an abnormal even sterol distribution at the plasma membrane.ConclusionsThis work is the first study in the opportunistic yeast Candida albicans, showing a role for the GUP1 gene in virulence as well as in the mechanisms underlying antifungal resistance. Moreover, its impact is even more significant since these results, taken together with all the knowledge about GUP1 gene (from S. cerevisiae and mammals) give consistence to the possibility that Gup1p may be part of a yeast morphogenic pathway parallel to the mammalian Hedgehog.
Highlights
GUP1 gene was primarily identified in Saccharomyces cerevisiae being connected with glycerol uptake defects in association with osmotic stress response
In C. albicans, as in S. cerevisiae, it is not possible to identify the precise Gup1p acyltransferase dependent reaction/s, we show that the deletion of GUP1 in C. albicans changes ergosterol plasma membrane constitution/distribution, presenting an increased resistance to azoles
CaGUP1 deletion provokes resistance to antifungals The S. cerevisiae O-acyltransferase Gup1p acts on lipids metabolism affecting the plasma membrane sphingolipids-sterol ordered domains assembly/integrity, and influencing the susceptibility to antifungal drugs [19]
Summary
GUP1 gene was primarily identified in Saccharomyces cerevisiae being connected with glycerol uptake defects in association with osmotic stress response. Gup1p was implicated in a complex and extensive series of phenotypes involving major cellular processes These include membrane and wall maintenance, lipid composition, bud-site selection, cytoskeleton orientation, vacuole morphology, secretory/endocytic pathway, GPI anchors remodelling, and lipid-ordered domains assembly, which is compatible with their inclusion in the Membrane Bound O-acyl transferases (MBOAT) family. Several other factors have been described in association with virulence, including the production of proteins that mediate adherence, the colonization and invasion of host tissues, the maintenance of cell wall integrity, phenotypic switching, and the avoidance of the host immune response [12,13,14,15,16,17,18]. In spite of all these knowledge, we are still far from fully understanding the precise mechanism(s) driven by Candida switch from commensal to pathogen status
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.