Abstract
The surface of the pathogenic yeast Candida albicans is coated with phospholipomannan (PLM), a phylogenetically unique glycolipid composed of beta-1,2-oligomannosides and phytoceramide. This study compared the specific contribution of PLM to the modulation of signaling pathways linked to the survival of C. albicans in macrophages in contrast to Saccharomyces cerevisiae. C. albicans endocytosis by J774 and disregulation of the ERK1/2 signal transduction pathway was associated downstream with a reduction in Bad Ser-112 phosphorylation and disappearance of free Bcl-2. This suggested an apoptotic effect, which was confirmed by staining of phosphatidylserine in the macrophage outer membrane. The addition of PLM to macrophages incubated with S. cerevisiae mimicked each of the disregulation steps observed with C. albicans and promoted the survival of S. cerevisiae. Externalization of membranous phosphatidylserine, loss of mitochondrial integrity, and DNA fragmentation induced by PLM showed that this molecule promoted yeast survival by inducing host cell death. These findings suggest strongly that PLM is a virulence attribute of C. albicans and that elucidation of the relationship between structure and apoptotic activity is an innovative field of research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.