Abstract

Until recently, NADPH oxidase (NOX) enzymes were thought to be a property of multicellularity, where the reactive oxygen species (ROS) produced by NOX acts in signaling processes or in attacking invading microbes through oxidative damage. We demonstrate here that the unicellular yeast and opportunistic fungal pathogen Candida albicans is capable of a ROS burst using a member of the NOX enzyme family, which we identify as Fre8. C. albicans can exist in either a unicellular yeast-like budding form or as filamentous multicellular hyphae or pseudohyphae, and the ROS burst of Fre8 begins as cells transition to the hyphal state. Fre8 is induced during hyphal morphogenesis and specifically produces ROS at the growing tip of the polarized cell. The superoxide dismutase Sod5 is co-induced with Fre8 and our findings are consistent with a model in which extracellular Sod5 acts as partner for Fre8, converting Fre8-derived superoxide to the diffusible H2O2 molecule. Mutants of fre8Δ/Δ exhibit a morphogenesis defect in vitro and are specifically impaired in development or maintenance of elongated hyphae, a defect that is rescued by exogenous sources of H2O2. A fre8Δ/Δ deficiency in hyphal development was similarly observed in vivo during C. albicans invasion of the kidney in a mouse model for disseminated candidiasis. Moreover C. albicans fre8Δ/Δ mutants showed defects in a rat catheter model for biofilms. Together these studies demonstrate that like multicellular organisms, C. albicans expresses NOX to produce ROS and this ROS helps drive fungal morphogenesis in the animal host.

Highlights

  • Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide play diverse roles in biology

  • We demonstrate here that the opportunistic human fungal pathogen Candida albicans uses a NADPH oxidase enzyme (NOX) and reactive oxygen species (ROS) to control morphogenesis in an animal host

  • C. albicans was not previously known to express NOX enzymes as these were thought to be a property of multicellular organisms, not unicellular yeasts

Read more

Summary

Introduction

Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide play diverse roles in biology. A well-studied example of controlled ROS production involves NADPH oxidase (NOX) enzymes [1]. These heme and flavin containing enzymes use electrons from NADPH to reduce molecular oxygen to superoxide [1]. NOX enzymes often partner with SODs in signaling processes, whereby SOD converts the cell impermeable superoxide to the diffusible hydrogen peroxide signaling molecule [1,2,3,4,5]. NOXSOD interactions are prevalent during infection where the microbial pathogen uses its arsenal of extracellular SODs to combat the oxidative burst of host NOX enzymes [6]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.