Abstract

Cellular adhesion plays an important role in numerous fundamental physiological and pathological processes. Its measurement is relatively complex, requires sophisticated equipment, and, in most cases, cannot be carried out without breaking the links between the studied cell and its target. In this contribution, we propose a novel, nanomotion-based, technique that overcomes these drawbacks. The applied force is generated by the studied cell itself (nanomotion), whereas cellular movements are detected by traditional optical microscopy and dedicated software. The measurement is non-destructive, single-cell sensitive, and permits following the evolution of the adhesion as a function of time. We applied the technique on different strains of the fungal pathogen Candida albicans on a fibronectin-coated surface. We demonstrated that this novel approach can significantly simplify, accelerate, and make more affordable living cells–substrate adhesion measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.