Abstract
Background and PurposeNeurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important aspect of Alzheimer's disease (AD) pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to have an important role in neuronal cell survival and is highly involved in adult neurogenesis. Candesartan is an angiotensin II receptor antagonist used for the treatment of hypertension and several studies have reported that it also has some neuroprotective effects. We investigated whether candesartan could restore the amyloid-β(25–35) (Aβ25-35) oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway.MethodsTo evaluate the effects of candesartan on the Aβ25-35 oligomer-inhibited proliferation of NSCs, the NSCs were treated with several concentrations of candesartan and/or Aβ25-35 oligomers, and MTT assay and trypan blue staining were performed. To evaluate the effect of candesartan on the Aβ-inhibited proliferation of NSCs, we performed a bromodeoxyuridine (BrdU) labeling assay. The levels of p85α PI3K, phosphorylated Akt (pAkt) (Ser473), phosphorylated glycogen sinthase kinase-3β (pGSK-3β) (Ser9), and heat shock transcription factor-1 (HSTF-1) were analyzed by Western blotting.ResultsThe BrdU assays demonstrated that NSC proliferation decreased with Aβ25-35 oligomer treatment; however, a combined treatment with candesartan restored it. Western blotting displayed that candesartan treatment increased the expression levels of p85α PI3K, pAkt (Ser473), pGSK-3β (Ser9), and HSTF. The NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of candesartan on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked.ConclusionsTogether, these results suggest that candesartan restores the Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.