Abstract

Cancer-associated fibroblasts (CAFs) participate in the development of the tumor microenvironment through the secretion of exosomes. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is an essential component of ferroptosis. However, the regulatory mechanism of ACSL4 in breast cancer remains unexplored. The study aimed to determine the influence of exosomal miR-454-3p from CAFs on lipid metabolism and ferroptosis. CAF-derived exosomes (CAF-exo) were isolated from breast cancer tissue of breast cancer patients and characterized using transmission electron microscopy (TEM) and Western blot. Luciferase reporter assay and RNA immunoprecipitation (RIP) were used to demonstrate the relationship between miR-454-3p and ACSL4. Cell viability and ferroptosis-related markers were detected by CCK-8 and Western blot. Malondialdehyde (MDA), glutathione (GSH), and iron levels were detected. Reverse transcription-quantitative PCR (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to assess miR-454-3p expression. miR-454-3p and ACSL4 levels were abnormally expressed in breast cancer tissues. CAF-exo significantly enhanced cell viability and GSH levels and suppressed MDA, and iron levels. CAF-exo upregulated ferroptosis suppressor protein 1 (FSP1) and glutathione peroxidase 4 (GPX4) expression, and reduced ACSL4 levels. miR-454-3p was strongly expressed in CAF-exo, and exosomal miR-454-3p suppressed lipid metabolism and ferroptosis in breast cancer cells. The effects of miR-454-3p inhibitor on lipid metabolism and ferroptosis were eliminated by ACSL4 knockdown. CAF-secreted exosomal miR-454-3p inhibited lipid metabolism and ferroptosis by targeting ACSL4 in breast cancer. This study revealed a novel molecular mechanism that offers a potential therapeutic intervention in breast cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.