Abstract

The expression of programmed death-ligand 1 (PD-L1) in tumor cells is a leading cause of tumor immune escape; however, the precise mechanism underlying the regulation of PD-L1 expression in gastric cancer (GC) cells remains unknown. In this study, we aimed to investigate the potential mechanism of cancer-associated fibroblasts (CAFs) regulating PD-L1 expression in GC cells. We evaluated the immunomodulatory effects of CAFs in GC cells in vitro via the transwell co-culture system, cytometric bead array, and Western blotting. We detected the role of interleukin (IL)-8 in affecting underlying pathways in GC cells via transfecting IL-8 small-interfering RNA (siRNA), and the protection effects of CAFs on GC cells exposed to CD8+ T cells via cytotoxicity assays. The results revealed that CAFs upregulated PD-L1 expression of GC cells. IL-8 expression was increased after KATO III or MKN45 cells co-cultured with CAF. Additionally, CAF-derived IL-8 promoted PD-L1 expression in GC cells through the P38, JNK, and NF-κB pathways. Besides, repertaxin, an IL-8 receptors (CXCR1/2) inhibitor, reduced PD-L1 expression in GC cells by blocking the P38, JNK, and NF-κB pathways. Furthermore, the expressions of p-P38, p-JNK, and p-NF-κB decreased after GC cells co-cultured with siIL-8-treated CAF. Moreover, repertaxin attenuated the protection of CAFs to cancer cells that were resistant to CD8+ T-cell cytotoxicity, and improved the antibody effects of anti-PD-L1 facilitating CD8+ T-cell cytotoxicity by targeting IL-8. Targeting CAF-derived IL-8 may defeat PD-L1 upregulation-mediated immune resistance in GC cells, which provides a novel approach to improve the immunotherapeutic efficacies of patients with GC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call