Abstract
In this paper, a framework using deep learning approach is proposed to identify two subtypes of human colorectal carcinoma cancer. The identification process uses information from gene expression and clinical data which is obtained from data integration process. One of deep learning architecture, multimodal Deep Boltzmann Machines (DBM) is used for data integration process. The joint representation gene expression and clinical is later used as Restricted Boltzmann Machines (RBM) input for cancer subtype identification. Kaplan Meier survival analysis is employed to evaluate the identification result. The curves on survival plot obtained from Kaplan Meier analysis are tested using three statistic tests to ensure that there is a significant difference between those curves. According to Log Rank, Generalized Wilcoxon and Tarone-Ware, the two groups of patients with different cancer subtypes identified using the proposed framework are significantly different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.