Abstract

AbstractCell membrane–based nanosystems with desirable characteristics have been studied extensively for many therapeutic applications. However, current research has focused on single cell membrane, and multifunctional fused membrane materials from different membrane types are still rare. Herein, a platelet–cancer stem cell (CSC) hybrid membrane‐coated iron oxide magnetic nanoparticle (MN) {[CSC‐P]MN} is presented for the first time for the enhanced photothermal therapy of head and neck squamous cell carcinoma (HNSCC). Inherited from the original source cells, the platelet membrane shows immune evading ability due to the surface marker comprising a number of “don't eat me” signals, and the CSC membrane has homotypic targeting capabilities due to the specific surface adhesion molecules. The [CSC‐P]MNs possess superior characteristics for immune evasion, active cancer targeting, magnetic resonance imaging, and photothermal therapy. Compared with single cell membrane–coated MNs, [CSC‐P]MNs exhibit prolonged circulation times and enhanced targeting abilities. Moreover, the [CSC‐P]MNs exhibit a superior photothermal ability that provides excellent HNSCC tumor growth inhibition, particularly in an immunocompetent Tgfbr1/Pten conditional double knockout HNSCC mouse model that contains a more complex tumor microenvironment that is similar to the human HNSCC microenvironment. Collectively, this biomimetic multimembrane‐coated nanoplatform may provide enhanced antitumor efficacy in the complex tumor microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call