Abstract
Chemical carcinogenesis involves metabolism in the body of the carcinogen to the ultimate carcinogen and its interaction with DNA. There is considerable interindividual variation in the metabolic ability to activate as well as detoxify the carcinogens and in the ability to repair the carcinogen-DNA adducts. In many cases such differences occur as genetic polymorphisms and form the basis for variation in susceptibility to carcinogens and thereby to cancer risk. The activation mechanism is particularly related to the cytochromes P-450 (CYPs), and four of these are known to activate carcinogens: CYP1A1, CYP1A2, CYP2E1, and CYP3A4. Increased cancer risk has been related to polymorphisms in the CYPs and other activating enzymes. The DNA repair mechanisms show considerable complexity, and deficient repair mechanisms in certain human disorders are clearly related to increased cancer risk. Yet, there is no unambiguous epidemiological evidence available for cancer risk among individuals in general. In vivo methods have to be refined and developed for use in epidemiological studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.