Abstract

Single-walled carbon nanotubes (SWNTs) have a high optical absorbance in the near-infrared (NIR) region. In this special optical window, biological systems are known to be highly transparent. The optical properties of SWNTs provide an opportunity for selective photothermal therapy for cancer treatment. Specifically, CoMoCAT nanotubes with a uniform size (about 0.81 nm) and a narrow absorption peak at 980 nm are ideal candidates for such a novel approach. Here, CoMoCAT SWNTs are conjugated to folate, which can bind specifically to the surface of the folate receptor tumor markers. Folate-SWNT (FA-SWNT) targeted tumor cells were irradiated by a 980-nm laser. In our in vitro and in vivo experiments, FA-SWNT effectively enhanced the photothermal destruction on tumor cells and noticeably spared the photothermal destruction for nontargeted normal cells. Thus, SWNTs, combined with suitable tumor markers, can be used as novel nanomaterials for selective photothermal therapy for cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.