Abstract

Finding cancer-driver genes has been a central theme of cancer research. We took a different perspective; instead of considering normal cells, we focused on cancerous cells and genes that maintained abnormal cell growth, which we named cancer-keeper genes (CKGs). Intervening CKGs may rectify aberrant cell growth, making them potential cancer therapeutic targets. We introduced control-hub genes and developed an efficient algorithm by extending network controllability theory. Control hub are essential for maintaining cancerous states and thus can be taken as CKGs. We applied our CKG-based approach to bladder cancer (BLCA). All genes on the cell-cycle and p53 pathways in BLCA were identified as CKGs, showing their importance in cancer. We discovered that sensitive CKGs - genes easily altered by structural perturbation - were particularly suitable therapeutic targets. Experiments on cell lines and a mouse model confirmed that six sensitive CKGs effectively suppressed cancer cell growth, demonstrating the immense therapeutic potential of CKGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call