Abstract

A wireless-integrated tumor microenvironment-responsive sensor designed from diselenide-functionalized carbon dot (dsCD) and hyaluronic acid polymer dot (PD(HA)) loaded in a mineralized conductive hydrogel (dsCD-PD(HA) Hydrogel) for detecting cellular reactive oxygen species (ROS) and pH detection. The manufactured ROS/pH responsive conductive hydrogel efficiently differentiated between cancer cells and normal cells in response to cellular factors through changes in fluorescence, electrical and mechanical response. Tumor microenvironment acidity and high ROS concentrations caused fluorescence recovery via boronate ester and diselenide bond cleavage alongside a change in electrical resistivity from 78.9 kΩ (pH 7.4) to 38.8 kΩ (0.1 mM H2O2/pH 6.8) due to disintegration of molecular interaction in the sensor. In vitro electrochemical analysis revealed different ΔR/R0 bending profiles between cancer (26.2 % and 25.9 % for HeLa and PC-3, respectively) and normal cells (17.9 %), alongside the optical performance demonstrating higher regain of fluorescence of cancer cells (HeLa and PC-3) compared to the normal cells (CHO-K1). Additionally, the dsCD-PD(HA) Hydrogel demonstrated favorable biocompatibility and in vitro ROS scavenging, with selective targeting of cancer cells. A wireless sensing platform was developed by connecting the dsCD-PD(HA) Hydrogel sensor to a smartphone, showing a precise signal during detection via resistance or electro-mechanical signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.