Abstract

BackgroundPopulation-based cancer registries are required to calculate cancer incidence in a geographical area, and several methods have been developed to obtain estimations of cancer incidence in areas not covered by a cancer registry. However, an extended analysis of those methods in order to confirm their validity is still needed.MethodsWe assessed the validity of one of the most frequently used methods to estimate cancer incidence, on the basis of cancer mortality data and the incidence-to-mortality ratio (IMR), the IMR method. Using the previous 15-year cancer mortality time series, we derived the expected yearly number of cancer cases in the period 2004–2013 for six cancer sites for each sex. Generalized linear mixed models, including a polynomial function for the year of death and smoothing splines for age, were adjusted. Models were fitted under a Bayesian framework based on Markov chain Monte Carlo methods. The IMR method was applied to five scenarios reflecting different assumptions regarding the behavior of the IMR. We compared incident cases estimated with the IMR method to observed cases diagnosed in 2004–2013 in Granada. A goodness-of-fit (GOF) indicator was formulated to determine the best estimation scenario.ResultsA total of 39,848 cancer incidence cases and 43,884 deaths due to cancer were included. The relative differences between the observed and predicted numbers of cancer cases were less than 10% for most cancer sites. The constant assumption for the IMR trend provided the best GOF for colon, rectal, lung, bladder, and stomach cancers in men and colon, rectum, breast, and corpus uteri in women. The linear assumption was better for lung and ovarian cancers in women and prostate cancer in men. In the best scenario, the mean absolute percentage error was 6% in men and 4% in women for overall cancer. Female breast cancer and prostate cancer obtained the worst GOF results in all scenarios.ConclusionA comparison with a historical time series of real data in a population-based cancer registry indicated that the IMR method is a valid tool for the estimation of cancer incidence. The goodness-of-fit indicator proposed can help select the best assumption for the IMR based on a statistical argument.

Highlights

  • Population-based cancer registries are required to calculate cancer incidence in a geographical area, and several methods have been developed to obtain estimations of cancer incidence in areas not covered by a cancer registry

  • The reference publication of observed cancer incidence, Cancer Incidence in Five Continents (CI5), collects cancer incidence data from population-based cancer registries that comply with the quality standards established by the International Agency for Research on Cancer (IARC)

  • To further strengthen the method, we propose a measure of goodness-of-fit (GOF) to help select the best scenario for the predicted behavior of the incidence-to-mortality ratio (IMR), which is a requirement for the application of this method

Read more

Summary

Introduction

Population-based cancer registries are required to calculate cancer incidence in a geographical area, and several methods have been developed to obtain estimations of cancer incidence in areas not covered by a cancer registry. Cancer is a worldwide public health problem and information regarding its incidence is necessary, there are regions not covered by a population-based cancer registry. In those regions, it is necessary to use other approaches to obtain incidence data that can be used in the healthcare planning and epidemiological surveillance of cancer. In Spain, estimates have been published for 2015 for 25 cancer sites [7] within the framework of a research project of the Spanish Network of Cancer Registries (REDECAN) (https:// redecan.org/redecan.org/es/index.html)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.