Abstract
The cancer chemopreventive and cytotoxic properties of 50 extracts derived from Twilight Zone (50-150 m) sponges, gorgonians and associated bacteria, together with 15 extracts from shallow water hard corals, as well as 16 fractions derived from the methanol solubles of the Twilight Zone sponge Suberea sp, were assessed in a series of bioassays. These assays included: Induction of quinone reductase (QR), inhibition of TNF-alpha activated nuclear factor kappa B (NFkappaB), inhibition of aromatase, interaction with retinoid X receptor (RXR), inhibition of nitric oxide (NO) synthase, inhibition 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), and inhibition of HL-60 and MCF-7 cell proliferation. The results of these assays showed that at least 10 extracts and five fractions inhibited NFkappaB by greater than 60%, two extracts and two fractions inhibited DPPH by more than 50%, nine extracts and two fractions affected the survival of HL-60 cells, no extracts or fractions affected RXR, three extracts and six fractions affected quinone reductase (QR), three extracts and 12 fractions significantly inhibited aromatase, four extracts and five fractions inhibited nitric oxide synthase, and one extract and no fractions inhibited the growth of MCF-7 cells by more than 95%. These data revealed the tested samples to have many and varied activities, making them, as shown with the extract of the Suberea species, useful starting points for further fractionation and purification. Moreover, the large number of samples demonstrating activity in only one or sometimes two assays accentuates the potential of the Twilight Zone, as a largely unexplored habitat, for the discovery of selectively bioactive compounds. The overall high hit rate in many of the employed assays is considered to be a significant finding in terms of "normal" hit rates associated with similar samples from shallower depths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.