Abstract
Cancer chemopreventive agents are designed to reduce the incidence of tumorigenesis by intervening at one or more stages of carcinogenesis. Recently, resveratrol, a natural product found in the diet of humans, has been shown to function as a cancer chemopreventive agent. Resveratrol was first shown to act as an antioxidant and antimutagenic agent, thus acting as an anti-initiation agent. Further evidence indicated that resveratrol selectively suppresses the transcriptional activation of cytochrome P-450 1A1 and inhibits the formation of carcinogen-induced preneoplastic lesions in a mouse mammary organ culture model. Resveratrol also inhibits the formation of 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted mouse skin tumors in the two-stage model. The enzymatic activities of COX-1 and -2 are inhibited by resveratrol in cell-free models, and COX-2 mRNA and TPA-induced activation of protein kinase C and AP-1-mediated gene expression are suppressed by resveratrol in mammary epithelial cells. In addition, resveratrol strongly inhibits nitric oxide generation and inducible nitric oxide synthase protein expression. NF kappa B is strongly linked to inflammatory and immune responses and is associated with oncogenesis in certain models of cancer, and resveratrol suppresses the induction of this transcription factor by a number of agents. The mechanism may involve decreasing the phosphorylation and degradation of I kappa B alpha. At the cellular level, resveratrol also induces apoptosis, cell cycle delay or a block in the G(1) --> S transition phase in a number of cell lines. Thus, resveratrol holds great promise for future development as a chemopreventive agent that may be useful for several disorders. Preclinical toxicity studies are underway that should be followed by human clinical trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.