Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) receptor c-Met is implicated in growth, invasion and metastasis of many tumors. Tumor cells harboring MET gene amplification are initially sensitive to c-Met tyrosine kinase inhibitors (TKI), but escape from long-term treatment has not been investigated. C-Met is a client of heat shock protein 90 (Hsp90) and is destabilized by Hsp90 inhibitors, suggesting that these drugs may inhibit tumors driven by MET amplification, although tumor escape under these conditions also has not been explored. Here, we evaluated the initial inhibitory effects of, and the likelihood of escape from, the Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and the c-Met TKI SU11274, using two cell lines harboring MET gene amplification. 17-AAG inhibited cell growth in both cell lines and induced substantial apoptosis, whereas SU11274 was only growth inhibitory in one cell line. In both cell lines, c-Met-dependent Akt, Erk and/or STAT3 signaling, as well as activation of the EGFR family, resumed shortly after treatment with c-Met TKI despite sustained c-Met inhibition. PKC δ upregulation may participate in reactivation of c-Met downstream signaling in both cell lines. In contrast to c-Met TKI, 17-AAG destabilized c-Met protein and durably blocked reactivation of downstream signaling pathways and EGFR family members. Our data demonstrate that downstream signaling in tumor cells over-expressing c-Met is not stably suppressed by c-Met TKI, even though c-Met remains fully inhibited. In contrast, Hsp90 inhibitors provide long-lasting suppression of c-Met-dependent signaling, and these drugs should be further evaluated in tumors driven by MET gene amplification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.