Abstract

We demonstrate a nanotechnology approach for the development of cancer-cell-specific subcellular organelle-targeted drug nanocarriers based on photostable nanodiamonds (ND) functionalized with folic acid and mitochondrial localizing sequence (MLS) peptides. We showed that these multifunctional NDs not only distinguish between cancer cells and normal cells, and transport the loaded drugs across the plasma membrane of cancer cells, but also selectively deliver them to mitochondria and induce significant cytotoxicity and cell death compared with free Dox localized in lysosomes. Importantly, the cellular uptake of Dox was dramatically increased in a resistant model of MCF-7 cells, which contributed to the significant circumvention of P-glycoprotein-mediated drug resistance. Our work provides a novel method of designing nanodiamond-based carriers for targeted delivery and for circumventing drug resistance in doxorubicin-resistant human breast adenocarcinoma cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.