Abstract

Selectively cuting off the nutrient supply and the metabolism pathways of cancer cells would be a promising approach to improve the efficiency of cancer treatment. Here, a cancer targeted cascade bioreactor (designated as mCGP) was constructed for synergistic starvation and photodynamic therapy (PDT) by embedding glucose oxidase (GOx) and catalase in the cancer cell membrane-camouflaged porphyrin metal-organic framework (MOF) of PCN-224 (PCN stands for porous coordination network). Due to biomimetic surface functionalization, the immune escape and homotypic targeting behaviors of mCGP would dramatically enhance its cancer targeting and retention abilities. Once internalized by cancer cells, mCGP was found to promote microenvironmental oxygenation by catalyzing the endogenous hydrogen peroxide (H2O2) to produce oxygen (O2), which would subsequently accelerate the decomposition of intracellular glucose and enhance the production of cytotoxic singlet oxygen (1O2) under light irradiation. Consequently, mCGP displayed amplified synergistic therapeutic effects of long-term cancer starvation therapy and robust PDT, which would efficiently inhibit the cancer growth after a single administration. This cascade bioreactor would further facilitate the development of complementary modes for spatiotemporally controlled cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.