Abstract

Cancer cells in their respective microenvironments must endure various growth-constraining stresses. Under these conditions, the cancer cell-derived factors are thought to modulate the signaling pathways between cell growth and dormancy. Here, we describe a cancer cell-derived regulatory system that modulates the phosphatidylinositol 3'-kinase (PI3K)-Akt pathway under serum deprivation stress. Through the use of biochemical purification, we reveal that cancer cell-secreted insulin-like growth factor 1 (IGF-1) and clusterin, an extracellular stress protein, constitute this regulatory system. We show that secreted clusterin associates with IGF-1 and inhibits its binding to the IGF-1 receptor and hence negatively regulates the PI3K-Akt pathway during serum deprivation. This inhibitory function of clusterin appears to prefer IGF-1, as it fails to exert any effects on epidermal growth factor signaling. We demonstrate furthermore that the constitutive activation of oncogenic signaling downstream of IGF-1 confers insensitivity to the inhibitory effects of clusterin. Thus, the interplay between cancer cell-derived clusterin and IGF-1 may dictate the outcome of cell growth and dormancy during tumorigenic progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.