Abstract

Emerging evidence suggests muscle depletion predicts survival of patients with cancer. At a cancer center in Alberta, Canada, consecutive patients with cancer (lung or GI; N = 1,473) were assessed at presentation for weight loss history, lumbar skeletal muscle index, and mean muscle attenuation (Hounsfield units) by computed tomography (CT). Univariate and multivariate analyses were conducted. Concordance (c) statistics were used to test predictive accuracy of survival models. Body mass index (BMI) distribution was 17% obese, 35% overweight, 36% normal weight, and 12% underweight. Patients in all BMI categories varied widely in weight loss, muscle index, and muscle attenuation. Thresholds defining associations between these three variables and survival were determined using optimal stratification. High weight loss, low muscle index, and low muscle attenuation were independently prognostic of survival. A survival model containing conventional covariates (cancer diagnosis, stage, age, performance status) gave a c statistic of 0.73 (95% CI, 0.67 to 0.79), whereas a model ignoring conventional variables and including only BMI, weight loss, muscle index, and muscle attenuation gave a c statistic of 0.92 (95% CI, 0.88 to 0.95; P < .001). Patients who possessed all three of these poor prognostic variables survived 8.4 months (95% CI, 6.5 to 10.3), regardless of whether they presented as obese, overweight, normal weight, or underweight, in contrast to patients who had none of these features, who survived 28.4 months (95% CI, 24.2 to 32.6; P < .001). CT images reveal otherwise occult muscle depletion. Patients with cancer who are cachexic by the conventional criterion (involuntary weight loss) and by two additional criteria (muscle depletion and low muscle attenuation) share a poor prognosis, regardless of overall body weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call