Abstract

A review-based hypothesis is presented on the energy flow in cancer patients. This hypothesis centres on the hypoxic condition of tumours, the essential metabolic consequences, especially the gluconeogenesis, the adaptation of the body, and the pathogenesis of cancer cachexia. In growing tumours the O(2) concentration is critically low. Mammalian cells need O(2) for the efficient oxidative dissimilation of sugars and fatty acids, which gives 38 and 128 moles of ATP per mole glucose and palmitic acid, respectively. In the absence of sufficient O(2) they have to switch to anaerobic dissimilation, with only 2 moles of ATP and 2 moles of lactic acid from 1 mole of glucose. Since mammalian cells cannot ferment fatty acids, in vivo tumour cells completely depend on glucose fermentation. Therefore, growth of these tumour cells will require about 40 times more glucose than it should require in the presence of sufficient O(2). Since lactic acid lowers the intracellular pH, it decreases the activity of pyruvate dehydrogenase, stimulates fermentation, and thus amplifies its own fermentative production. Compensatory glucose is provided by hepatic gluconeogenesis from lactic acid. However, the liver must invest 3 times more energy to synthesize glucose than can be extracted by tumour cells in an anaerobic way. The liver extracts the required energy from amino acids and especially from fatty acids in an oxidative way. This may account for weight loss, even when food intake seems adequate. In the liver 6 moles of ATP are invested in the gluconeogenesis of one mole of glucose. The energy content of 4 out of these 6 moles of ATP is dissipated as heat. This may account for the elevated body temperature and sweating experience by cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.