Abstract

Tumor relapse after radiotherapy is a significant challenge to oncologists, even after recent the advances in technologies. Here, we showed that cancer-associated fibroblasts (CAFs), a major component of cancer stromal cells, promoted irradiated cancer cell recovery and tumor relapse after radiotherapy. We provided evidence that CAFs-produced IGF1/2, CXCL12 and β-hydroxybutyrate were capable of inducing autophagy in cancer cells post-radiation and promoting cancer cell recovery from radiation-induced damage in vitro and in vivo in mice. These CAF-derived molecules increased the level of reactive oxygen species (ROS) post-radiation, which enhanced PP2A activity, repressing mTOR activation and increasing autophagy in cancer cells. Consistently, the IGF2 neutralizing antibody and the autophagy inhibitor 3-MA reduce the CAF-promoted tumor relapse in mice after radiotherapy. Taken together, our findings demonstrated that CAFs promoted irradiated cancer cell recovery and tumor regrowth post-radiation, suggesting that targeting the autophagy pathway in tumor cells may be a promising therapeutic strategy for radiotherapy sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.